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Abstract—PatchScope is a modular framework for analyzing
software contributions, providing insights beyond traditional
metrics. Its customizable modules enable granular analysis of
contribution dynamics and project evolution.

At its core, a flexible automatic code annotator labels source
code lines using customizable rules, categorizing changes such
as documentation, testing, or code updates. Based on that
PatchScope produces reports with actionable insights for team
evaluation, expertise identification, and longitudinal studies.

With applications in annotation automation, bug localization,
patch dataset analysis, and project monitoring, PatchScope is a
versatile tool for researchers, project managers, and developers,
emphasizing flexibility and ease of use.

Index Terms—source code annotation, commit annotation, code
analysis, contributor profiling, project insights

I. INTRODUCTION

In today’s collaborative software development landscape,
understanding and evaluating developer contributions is criti-
cal for project success. While code contributions are tracked,
the details surrounding what developers contribute—whether
code, documentation, translation, or project configuration—
can reveal valuable insights into each developer’s role and
expertise within a project. This paper introduces PatchScope,a
new tool that provides a systematic approach to annotating,
filtering, and reporting of developer contributions in Git repos-
itories.

PatchScope comprises three core components that work
together to offer a flexible comprehensive analysis framework.

First, patch-selecting component allows targeted commit
filtering for the annotation process. PatchScope filters select
patches by specific users, commits between defined versions,
or commits affecting given directory. Filtered sets of patches
are then processed by the annotator.

Second, the code annotator enables granular labeling of
changed source code lines, based on the file name, its place in
the project structure, and tokens of lexed contents of the file. It
comes with sane and verified defaults, but also allows defining
custom annotation rules. This customization lets users focus
on elements most relevant to their analyses.

Third, the reporting module offers flexible output options
for presenting findings from the annotated commits. It gathers
insights from selected annotations into a single JSON data file.
Users can also generate web-based dashboard, with analytical
plots comparable to an advanced version of GitHub’s Insights

view. The starting page of the dashboard provides detailed
profiles of user contributions by type.

PatchScope is designed with modularity in mind, allowing
each component to be used independently, or substituted with
custom tools for tailored analysis workflows.

PatchScope has versatile applications, including manual
annotation workflows, bug localization, project monitoring,
research on patch-based datasets, behavioral analysis and
security investigations.

The resulting tool and example annotations are publicly
available at https://figshare.com/s/d78ffecdee987f2ed55d, the
source code at GitHub https://github.com/ncusi/PatchScope,
and a demo at https://patchscope-9d05e7f15fec.herokuapp.
com.

II. TOOL DESCRIPTION

PatchScope is a modular tool for analyzing and reporting
on code changes. The tool (see Fig. 1) integrates three key
components: (1) extracting patches from version control sys-
tems or user inputs, (2) applying predefined annotation rules,
with verified defaults for Python and Java, and (3) generating
configurable reports with advanced visualizations. We describe
each module in detail below.

Fig. 1: Overview of tool components

A. Patches selection

The first phase of the process is Patch Selection Phase; this
phase can be integrated with the next phase. The tool supports
three types of patches sources: individual patch files, patch
datasets (directories with patches), and Git repositories.

When annotating changes in a Git repository, users can de-
fine commit of interest through custom lists, and through Git’s
native revision filtering options. The latter allows specifying,
among others, commits within selected version range, commits
authored by a specific user, or changes on a selected branch.

https://figshare.com/s/d78ffecdee987f2ed55d
https://github.com/ncusi/PatchScope
https://patchscope-9d05e7f15fec.herokuapp.com
https://patchscope-9d05e7f15fec.herokuapp.com


This patch selection mechanism helps with ad-hoc analysis and
reduces computational costs, particularly for large repositories.

B. Annotation Tool

The second step supported by PatchScope, the Annotation
Phase, is designed to produce detailed line-by-line annotations
that capture the unique characteristics of each changed line
within a patch file or a commit. For each line, three pieces
of data are generated, containing (1) the line type, determined
by analyzing lexer output (by default we use Pygments [1]),
(2) file-specific information derived from GitHub Linguist [2],
and (3) the file path within the project structure.

This data allows creating customizable annotations that can
be tailored to the specifics of users’ project or organization.
For example, in a large organization, users can define rules
aligned with common project structures, while in language-
specific environments, rules can adapt to typical organizational
patterns in a given programming language.

The tool includes a set of predefined general rules compati-
ble with any file format supported by Pygments. Additionally,
it offers specialized rule sets for Python and Java projects,
curated and validated through comparisons with manual an-
notations by experienced programmers on publicly available
annotated datasets (Java [3], Python [4] with annotations
from [5]). This ensures end users have a clear understanding
of the tool’s accuracy.

New annotation rules can be easily introduced as shown by
the following example of configuration code. Here the purpose
of a file is defined based on its path. Moreover, a line callback
function determines line types. Empty lines are marked as
such. Comments and tests are categorized as documentation.
PURPOSE['test/**'] = 'test'
PURPOSE['po{,4a}/**'] = 'translation'

def callback(file_purpose, tokens):
if line_is_empty(tokens): return 'empty'
if file_purpose in {'test', 'code'}

and line_is_comment(tokens):
return 'documentation'

return file_purpose

In addition to annotating changed lines, this phase also
extracts commit metadata, e.g. the time a commit was au-
thored. It also computes quantitative and qualitative properties
regarding each patch [6], e.g. (1) the numbers of source code
lines that were added, removed or modified by a patch, (2) the
number of modified files, (3) the number of change groups, i.e.
sequences of continuous changes in a file, and (4) spreadings
of change groups (chunks), etc.

C. Aggregation and reporting

The aggregation and reporting component forms the final
phase of PatchScope. It provides a flexible framework for
deriving insights from annotated commit data. It enables users
to generate customizable reports and aggregation pipelines tai-
lored to specific needs, while offering ready-to-use templates
for immediate analysis. This design ensures adaptability for
diverse project requirements while maintaining ease of use.

As a demonstration, PatchScope includes an enhanced
GitHub Insights-style report. This report offers a detailed
overview of different types of user contributions, tracking
their evolution over time. It features a distribution of changed
lines among different line types, and a developer-centric view
that highlights individual contributions. These visualizations
offer actionable insights into project dynamics and individual
developer contributions.

By integrating foundational reporting tools with extensibil-
ity, this component supports advanced use cases such as exper-
tise identification, contribution comparisons, and engagement
trend analysis. Its modularity empowers users to customize or
extend reporting, enabling comprehensive project management
and contributor evaluation across varied development contexts.

Dashboard and supported plots: The tool aggregates vari-
ous visualizations into a unified dashboard resembling GitHub
Insights. By presenting a cohesive project overview, it offers
actionable insights into team dynamics, contribution patterns,
and project health. This allows project managers to optimize
workflows, balance priorities, and maintain high-quality out-
puts with minimal configuration.

Week-Hour Heatmap (2a): This visualization captures de-
veloper activity across the week and by hour of the day, high-
lighting productivity patterns. It can help a project manager to
identify peak activity periods. It can also be an indicator of a
change in developers’ behaviour.

Sankey Project Flow (2b): This plot illustrates the flow of
lines through project directories and their associated labels. It
provides a compact view of how contributions are distributed
through project structure. It helps detecting imbalances in
development efforts across different parts of the project.

Monthly Contribution Heatmap (2c): It offers a lon-
gitudinal perspective. This heatmap tracks contributions by
assigned label (e.g. “code,” “testing,”, “documentation”) over
time. It can uncover trends, such as a decrease in “testing” or
“documenting” activity post-release. Thus it gives actionable
insights into the development process.

User and Project Summary (2d): This summary consoli-
dates metrics on lines added, removed, and their distribution
across predefined categories. It provides insights into individ-
ual contributions, identifying gaps such as minimal “testing”
involvement, and supports targeted strategies like mentoring
or task reassignment to address disparities.

III. POSSIBLE APPLICATIONS

Manual annotation frameworks – PatchScope is a pow-
erful tool for manual annotation workflows, particularly in
research contexts where expert-driven line annotations are
crucial for specific objectives [7], [3], [5]. By automating
routine annotations (pre-labeling of lines), PatchScope reduces
the manual workloads and enables experts to focus on intricate,
high-value tasks that require specialized attention.

Bug localization – PatchScope is currently being tested for
its effectiveness in precise bug localization at both file and
line levels. By generating detailed annotations, it enhances
bug localization systems not only by identifying modified



(a) Working days and working hours.
(b) Distribution of contribution to the project structure (left to right)
with annotations (right).

(c) Annotated heatmap of daily contributions.

(d) Annotated summary of user contributions.

lines but also by assessing their significance in the repair
process. Preliminary evaluations suggest that these annotations
aid prioritizing files or lines for fixes. This functionality is
under active investigation [8].

Project Monitoring – Furthermore, PatchScope can be
used by project managers to monitor team workflows and
project progress effectively. Through visualizations like ac-
tivity heatmaps and contribution summaries, managers can
identify productivity patterns, track trends, and detect im-
balances. This supports efficient task scheduling, resource
allocation, and performance evaluation, helping optimize team
coordination and project outcomes.

Supporting Bug Dataset Research – PatchScope enhances
research on patch-based datasets such as those presented
in articles [6], [3], [5]. By streamlining patch analysis and
providing key characteristics, it offers researchers a quick
starting point for exploration. This facilitates rapid prototyp-
ing, hypothesis validation, and sanity checks. Thus it enables
researchers to efficiently refine their focus before fully com-
mitting to a problem.

Behavioral Analysis and Security – PatchScope enables
the investigation of user behaviors over extended periods. For
instance, the XZ attack revealed how malicious developers can
hide harmful contributions among legitimate ones. PatchScope
supports efficient post-mortem analyses, uncovering patterns
and strategies employed by malicious actors, enhancing un-
derstanding of such tactics.

IV. EXPERIMENTS

Effectiveness in Line Annotation To evaluate the effective-
ness of PatchScope, we compared its performance against two
manually annotated datasets: the Java-based annotated dataset
from Herbold et al. [3], and the Python-based BugsInPy
dataset [4] — with annotations from HaPy-Bugs [5]. Each bug
in these datasets, along with its associated changed lines, has
been annotated by four developers for the former [3], and three
developers for the latter [5]. Consensus is defined accordingly
for each dataset (in line with dataset assumptions). Details can
be found in Table I.

We measured the effectiveness of PatchScope by matching
lines with the dataset, and then finding if the label generated
for a line matches the consensus label from the dataset. The
overall agreement is reported as the percentage of correctly
annotated lines, compared to all matched lines with consensus.
Agreement for individual bugs is presented as the mean of the
agreement as percentage, with the standard deviation, provid-
ing a measure of confidence. The majority of the differences
concern labels that PatchScope currently does not support,
e.g. various refactoring-related labels.

Thus, we conclude that PatchScope achieves over 91% line-
level annotation accuracy across both datasets. At the patch
level, it correctly annotates an average of (93±17)% per patch
in [3], and (96± 9)% per patch in [5]. These results demon-
strate PatchScope’s high accuracy and satisfactory agreement
across the analyzed datasets.



TABLE I: Evaluation Results for PatchScope Across Datasets

Dataset Projects Patches Lines Consensus % Lines Agree Patch Agree (%) Time (s)

Herbold et al. [3]* 27(29) 3,179(3,519) 253,938(290,812) 3+ of 4 91.272% (93± 17)% 626.94 s
BugsInPy [4] (annotations [5]) 17 496 60,194 2+ of 3 91.176% (96± 9)% 321.45 s

For two projects from Herbold et al. [3] (’wss4j’ and
’santuario-java’), 340 commits (36,874 lines) are missing from
git repository. Agreement is reported for the existing patches.

A. Execution time

PatchScope leverages Pygments for lexical analysis of
changed lines, facilitating line type classification and annota-
tion. Parsing accuracy depends on contextual information, such
as preceding lines for multiline constructs (e.g., comments). To
enhance precision, PatchScope analyzes the entire line range
from the unified diff and, and when available (git repository):
the complete file contents before and after changes. Parsing
entire files incurs a performance overhead, as reflected in the
execution times in Table I. Despite this, the tool performs
reasonably, processing the dataset in 629 s for [3] and 321 s
for [5].

V. RELATED WORK

In previous studies, repository annotation tools fell into two
categories: (a) custom build feature generation tools, designed
for a specific purpose or research direction [9], [10], [11],
[12], [13] and (b) generic dataset creation tools, which require
complex setups, such as working database instances [14], [15].
In this article we present PatchScope, an extensible tool that
serves both purposes while retaining a simple setup.

Rabbit [9] has the goal of detecting bot accounts on
GitHub. The underlying algorithm utilizes 6 features created
from GitHub API events and XGBoost classification model.
However, feature selection and engineering for similar learn
to rank models can be automated utilizing our PatchScope.

DRMiner [10] detects refactorization in Dockerfiles via
comparison of enhanced abstract syntax trees (E-AST) be-
tween two revisions of the same file. However, PatchScope
can be used in similar cases to provide preprocessing even
before AST construction.

CADV [11] and AnnotationSniffer [12] are Java annotation
processing tools. CADV visualizes annotation usage per pack-
age, class and whole system to help with program compre-
hension by developers. AnnotationSniffer extracts annotation
form source to prepare metric like frequency features, which
can be used by other algorithms. Similar goals can be achieved
utilizing PatchScope with custom rules for Java files.

CoaCor [13] is a framework that employs reinforcement
learning to train a code annotation model for generating natural
language descriptions of code snippets, thereby enhancing
code retrieval effectiveness. By integrating a code retrieval
model to provide feedback, CoaCor ensures that the generated
annotations accurately represent code semantics, facilitating
improved retrieval performance. Experimental results demon-
strate that CoaCor’s annotations significantly enhance retrieval

accuracy, outperforming traditional methods. PatchScope sim-
plifies annotation with configurable rules, potentially reducing
the need for algorithm training step. Moreover, it could be
integrated seamlessly into frameworks like CoaCor as a data
source.

ETCR [14] infrastructure aids mining source code and
corresponding code review via GitHub or Gerrit API. This tool
was successfully used for review collection for CodeReviewer
pre-trained model [16]. It helps automating tasks like code
quality estimation, review generation and code refinement.
ETCR stores data in Postgres database and allows access via
the connected Elasticsearch engine.

SmartSHARK [15] consists of multiple tools, integrated
with central MongoDB database to provide reproducible
datasets for mining software repositories. Data can be retrieved
from repositories via vcsSHARK and enriched with additional
information, such as issue tracking, mailing list scraping,
and software metrics calculation. This data can be accessed
through a Django-hosted website, directly from the database,
or via a dedicated ORM library (pycoSHARK for Python and
jSHARK for Java).

In comparison to ETCR [14] and SmartSHARK [15], Patch-
Scope stores all data as files, for simpler setup and easier
scripting.

VI. CONCLUSION

PatchScope provides a modular and adaptable framework
for analyzing software contributions, enabling project teams,
researchers, and security analysts to derive detailed insights
beyond traditional metrics. Its independently operable modules
ensure flexibility, allowing users to customize components for
diverse analytical needs. The tool delivers a granular view
of contribution dynamics, supporting deeper understanding
and informed decision-making for task assignments, security
audits, and project evolution.

PatchScope has demonstrated potential in automating an-
notation workflows, improving bug localization, and aiding
project monitoring and research on patch-based datasets. Its
adaptability, as shown through throughput and accuracy trade-
offs, allows users to optimize performance and precision based
on specific requirements.

By bridging manual expertise with automated efficiency,
PatchScope empowers researchers and practitioners to focus
on high-value tasks. We believe PatchScope holds significant
utility for both industry and academia, providing enhanced
insights into software development practices. Future efforts
will aim to expand its language support, improve scalability,
add new analyses and visualizations, and refine its integration
into diverse workflows, further amplifying its utility and
impact.
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